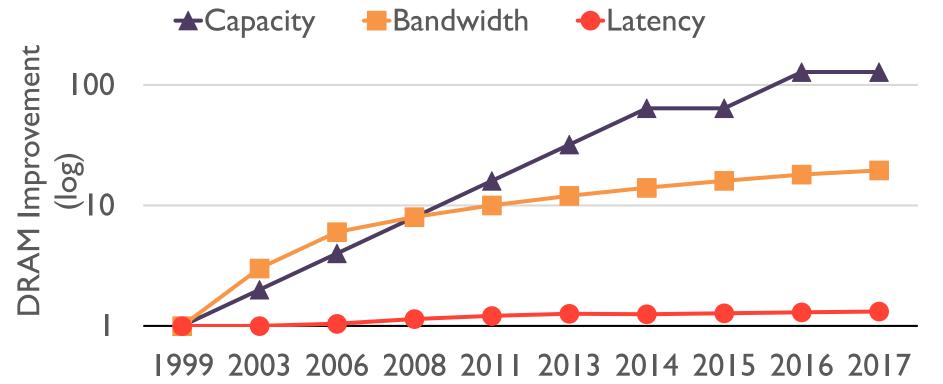
CSC D70: Compiler Optimization Prefetching

Prof. Gennady Pekhimenko University of Toronto Winter 2018

The content of this lecture is adapted from the lectures of Todd Mowry and Phillip Gibbons

The Memory Latency Problem



- \uparrow processor speed >> \uparrow memory speed
- caches are not a panacea

Prefetching for Arrays: Overview

- Tolerating Memory Latency
- Prefetching Compiler Algorithm and Results
- Implications of These Results

Coping with Memory Latency

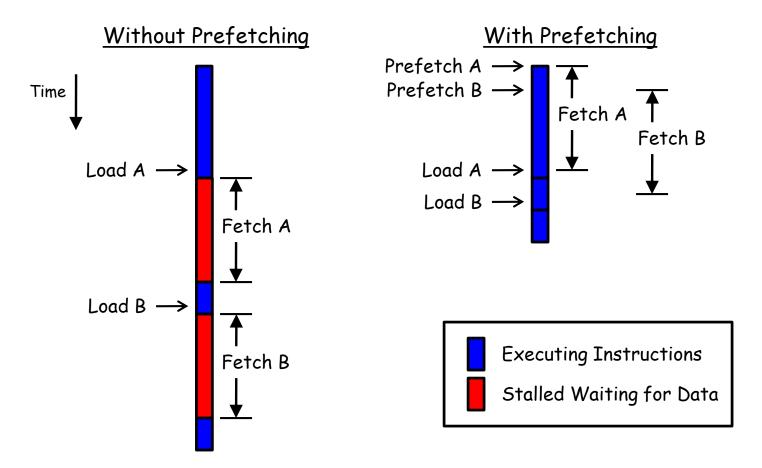
Reduce Latency:

- Locality Optimizations
 - reorder iterations to improve cache reuse

Tolerate Latency:

- Prefetching
 - move data close to the processor before it is needed

Tolerating Latency Through Prefetching



• overlap memory accesses with computation and other accesses

Types of Prefetching

Cache Blocks:

• (-) limited to unit-stride accesses

Nonblocking Loads:

• (-) limited ability to move back before use

Hardware-Controlled Prefetching:

- (-) limited to constant-strides and by branch prediction
- (+) no instruction overhead

Software-Controlled Prefetching:

- (-) software sophistication and overhead
- (+) minimal hardware support and broader coverage

Prefetching Goals

- Domain of Applicability
- Performance Improvement
 - maximize benefit
 - minimize overhead

Prefetching Concepts

possible only if addresses can be determined ahead of time *coverage factor* = fraction of misses that are prefetched *unnecessary* if data is already in the cache *effective* if data is in the cache when later referenced

Analysis: what to prefetch

- maximize coverage factor
- minimize unnecessary prefetches

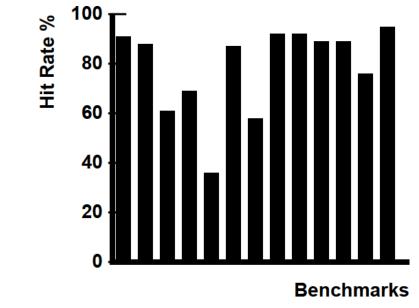
<u>Scheduling</u>: when/how to schedule prefetches

- maximize effectiveness
- minimize overhead per prefetch

Reducing Prefetching Overhead

- instructions to issue prefetches
- extra demands on memory system

Hit Rates for Array Accesses



important to minimize unnecessary prefetches

Compiler Algorithm

Analysis: what to prefetch

• Locality Analysis

Scheduling: when/how to issue prefetches

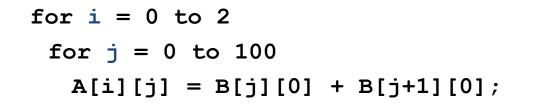
- Loop Splitting
- Software Pipelining

Steps in Locality Analysis

1. Find data reuse

- if caches were infinitely large, we would be finished
- 2. Determine "localized iteration space"
 - set of inner loops where the data accessed by an iteration is expected to fit within the cache
- 3. Find data locality:
 - − reuse \cap localized iteration space \Rightarrow locality

Data Locality Example





Reuse Analysis: Representation

• Map *n* loop indices into *d* array indices via array indexing function:

]

$$\vec{f}(\vec{i}) = H\vec{i} + \vec{c}$$

$$A[i][j] = A\left(\begin{bmatrix}1 & 0\\ 0 & 1\end{bmatrix}\begin{bmatrix}i\\j\end{bmatrix} + \begin{bmatrix}0\\ 0\end{bmatrix}\right)$$

$$B[j][0] = B\left(\begin{bmatrix}0 & 1\\ 0 & 0\end{bmatrix}\begin{bmatrix}i\\j\end{bmatrix} + \begin{bmatrix}0\\ 0\end{bmatrix}\right)$$

$$B[j+1][0] = B\left(\begin{bmatrix}0 & 1\\ 0 & 0\end{bmatrix}\begin{bmatrix}i\\j\end{bmatrix} + \begin{bmatrix}1\\ 0\end{bmatrix}\right)$$

Finding Temporal Reuse

• Temporal reuse occurs between iterations \vec{i}_1 and \vec{i}_2 whenever:

$$H\vec{i}_{1} + \vec{c} = H\vec{i}_{2} + \vec{c}$$
$$H(\vec{i}_{1} - \vec{i}_{2}) = \vec{0}$$

• Rather than worrying about individual values \vec{i}_1 of \vec{i}_2 and, we say that reuse occurs along direction \vec{r} vector when: $H(\vec{r}) = \vec{0}$

• Solution: compute the *nullspace* of *H*

Temporal Reuse Example

```
for i = 0 to 2
for j = 0 to 100
    A[i][j] = B[j][0] + B[j+1][0];
```

• Reuse between iterations (i_1, j_1) and (i_2, j_2) whenever:

$$\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} i_1 \\ j_1 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} i_2 \\ j_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
$$\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} i_1 - i_2 \\ j_1 - j_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

- True whenever j₁ = j₂, and regardless of the difference between i₁ and i₂.
 - i.e. whenever the difference lies along the nullspace of $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$
 - which is span{(1,0)} (i.e. the outer loop).

Prefetch Predicate

Locality Type	Miss Instance	Predicate
None	Every Iteration	True
Temporal	First Iteration	i = 0
Spatial	Every l iterations (l = cache line size)	(i mod l) = 0

Example: for i = 0 to 2 for j = 0 to 100

A[i][j] = B[j][0] + B[j+1][0];

Reference	Locality	Predicate
A[i][j]	[i] = [none spatial]	(j mod 2)=0
B[j+1][0]	[i] = [temporal none]	i = 0

Compiler Algorithm

Analysis: what to prefetch

• Locality Analysis

Scheduling: when/how to issue prefetches

- Loop Splitting
- Software Pipelining

Loop Splitting

- Decompose loops to isolate cache miss instances
 - cheaper than inserting IF statements

Locality Type	Predicate	Loop Transformation
None	True	None
Temporal	i = 0	Peel loop i
Spatial	(i mod l) = 0	Unroll loop i by l

- Apply transformations recursively for nested loops
- Suppress transformations when loops become too large
 - avoid code explosion

Software Pipelining

Iterations Ahead = $\left|\frac{1}{5}\right|$

where **/** = memory latency, **s** = shortest path through loop body

Original Loop
for (i = 0; i<100; i++)
a[i] = 0;
</pre>

Example Revisited

Original Code

```
for (i = 0; i < 3; i++)
  for (j = 0; j < 100; j++)
   A[i][j] = B[j][0] + B[j+1][0];
     O Cache Hit
    • • Cache Miss
                           i = 0
      A[i][j]
                                      }
    \circ \circ \circ \circ \circ \circ \circ
    0 0 0 0 0 0 0
                                      }
  j
     B[j+1][0]
                            i>0
i
                                        }
    0000000
    0000000
     J
```

Code with Prefetching

```
prefetch(&A[0][0]);
for (j = 0; j < 6; j += 2) {
 prefetch(&B[j+1][0]);
 prefetch(&B[j+2][0]);
 prefetch(&A[0][j+1]);
for (j = 0; j < 94; j += 2) {
 prefetch(&B[j+7][0]);
  prefetch(&B[j+8][0]);
 prefetch(&A[0][j+7]);
 A[0][j] = B[j][0]+B[j+1][0];
 A[0][i+1] = B[i+1][0]+B[i+2][0];
for (j = 94; j < 100; j += 2) {
 A[0][j] = B[j][0]+B[j+1][0];
 A[0][j+1] = B[j+1][0]+B[j+2][0];
for (i = 1; i < 3; i++) {
  prefetch(&A[i][0]);
 for (j = 0; j < 6; j += 2)
   prefetch(&A[i][j+1]);
  for (j = 0; j < 94; j += 2) {
   prefetch(&A[i][j+7]);
   A[i][j] = B[j][0] + B[j+1][0];
    A[i][j+1] = B[j+1][0] + B[j+2][0];
  for (j = 94; j < 100; j += 2) {
   A[i][j] = B[j][0] + B[j+1][0];
    A[i][j+1] = B[j+1][0] + B[j+2][0];
```

Prefetching Indirections

for (i = 0; i<100; i++)
 sum += A[index[i]];</pre>

Analysis: what to prefetch

- both dense and indirect references
- difficult to predict whether indirections hit or miss

Scheduling: when/how to issue prefetches

modification of software pipelining algorithm

Software Pipelining for Indirections

Original Loop

```
for (i = 0; i<100; i++)
    sum += A[index[i]];</pre>
```

```
Software Pipelined Loop
(5 iterations ahead)
```

```
for (i = 0; i < 5; i++) /* Prolog 1 */
   prefetch(&index[i]);
for (i = 0; i<5; i++) { /* Prolog 2 */
   prefetch(&index[i+5]);
   prefetch(&A[index[i]]);
}
for (i = 0; i<90; i++) { /* Steady State*/
   prefetch(&index[i+10]);
   prefetch(&A[index[i+5]]);
   sum += A[index[i]];
}
for (i = 90; i<95; i++) { /* Epilog 1 */
   prefetch(&A[index[i+5]]);
   sum += A[index[i]];
}
for (i = 95; i<100; i++) /* Epilog 2 */
   sum += A[index[i]];
```

Summary of Results

Dense Matrix Code:

- eliminated 50% to 90% of memory stall time
- overheads remain low due to prefetching selectively
- significant improvements in overall performance (6 over 45%)

Indirections, Sparse Matrix Code:

expanded coverage to handle some important cases

Prefetching for Arrays: Concluding Remarks

- Demonstrated that software prefetching is effective
 - selective prefetching to eliminate overhead
 - dense matrices and indirections / sparse matrices
 - uniprocessors and multiprocessors

 Hardware should focus on providing sufficient memory bandwidth

Prefetching for Recursive Data Structures

Recursive Data Structures

- Examples:
 - linked lists, trees, graphs, ...
- A common method of building large data structures
 - especially in non-numeric programs
- Cache miss behavior is a concern because:
 - large data set with respect to the cache size
 - temporal locality may be poor
 - little spatial locality among consecutively-accessed nodes

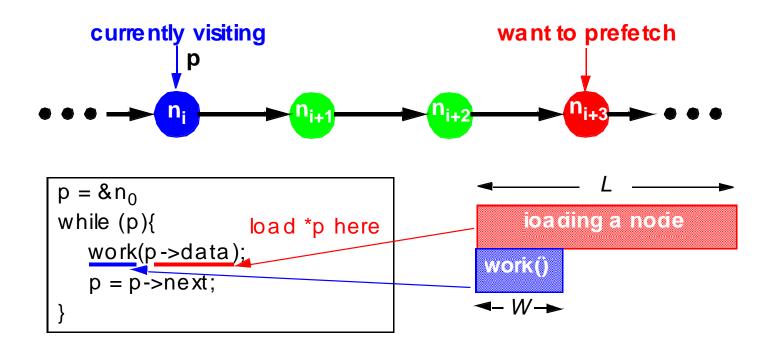
<u>Goal</u>:

 Automatic Compiler-Based Prefetching for Recursive Data Structures

Overview

- Challenges in Prefetching Recursive Data Structures
- Three Prefetching Algorithms
- Experimental Results
- Conclusions

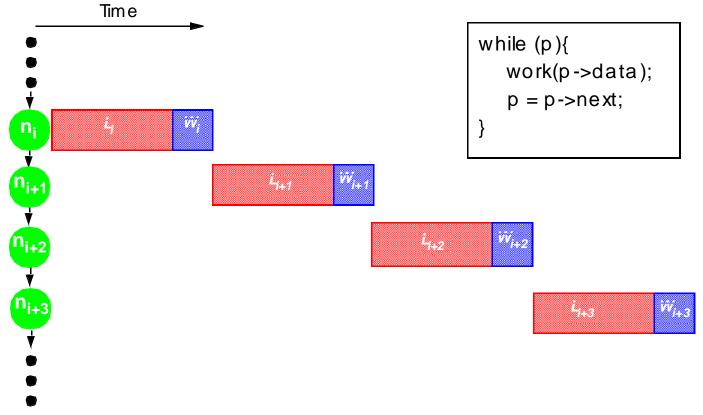
Scheduling Prefetches for Recursive Data Structures



Our Goal: fully hide latency

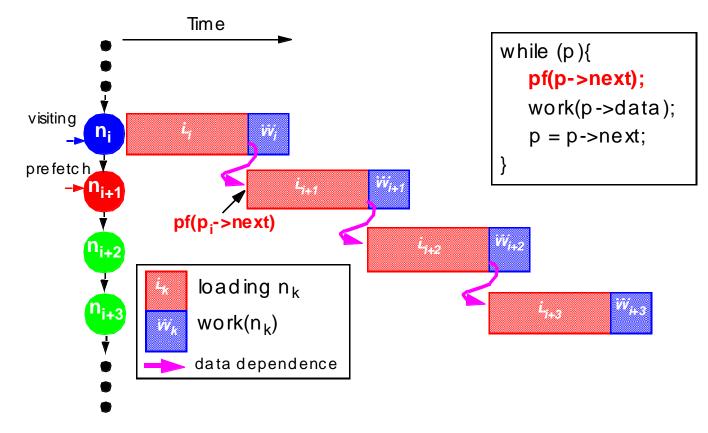
- thus achieving fastest possible computation rate of 1/W
- e.g., if L = 3W, we must prefetch 3 nodes ahead to achieve this

Performance without Prefetching



computation rate = 1 / (L+W)

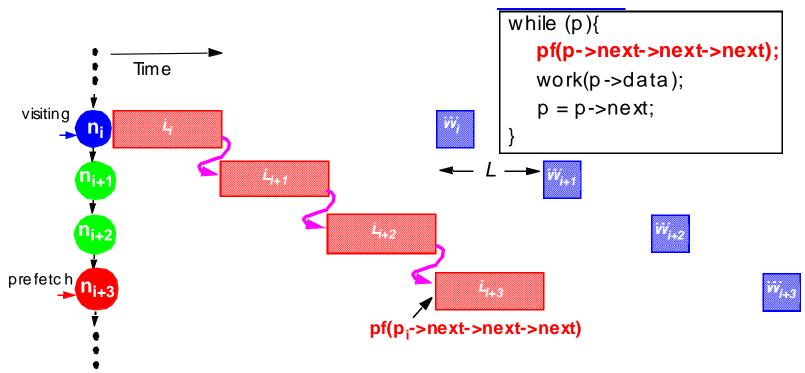
Prefetching One Node Ahead



• Computation is overlapped with memory accesses

computation rate = 1/L

Prefetching Three Nodes Ahead

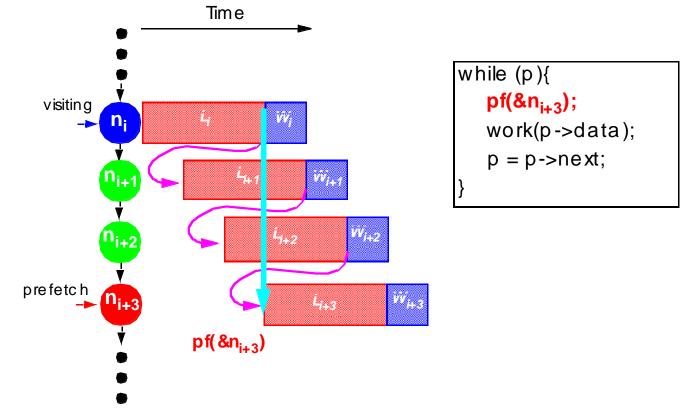


computation rate does not improve (still = 1/L)!

Pointer-Chasing Problem:

• any scheme which follows the pointer chain is limited to a rate of 1/L

Our Goal: Fully Hide Latency



achieves the fastest possible computation rate of 1/W

Overview

- Challenges in Prefetching Recursive Data Structures
- Three Prefetching Algorithms
 - Greedy Prefetching
 - History-Pointer Prefetching
 - Data-Linearization Prefetching
- Experimental Results
- Conclusions

Pointer-Chasing Problem

<u>Key</u>:

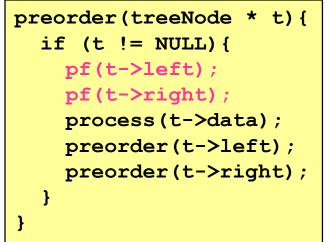
 n_i needs to know &n_{i+d} without referencing the d-1 intermediate nodes

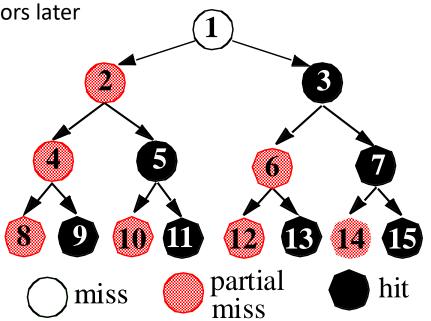
Our proposals:

- use *existing* pointer(s) in n_i to approximate &n_{i+d}
 Greedy Prefetching
- add *new* pointer(s) to n_i to approximate &n_{i+d}
 History-Pointer Prefetching
- compute &n_{i+d} *directly* from &n_i (no ptr deref)
 History-Pointer Prefetching

Greedy Prefetching

- Prefetch all neighboring nodes (simplified definition)
 - only one will be followed by the immediate control flow
 - hopefully, we will visit other neighbors later

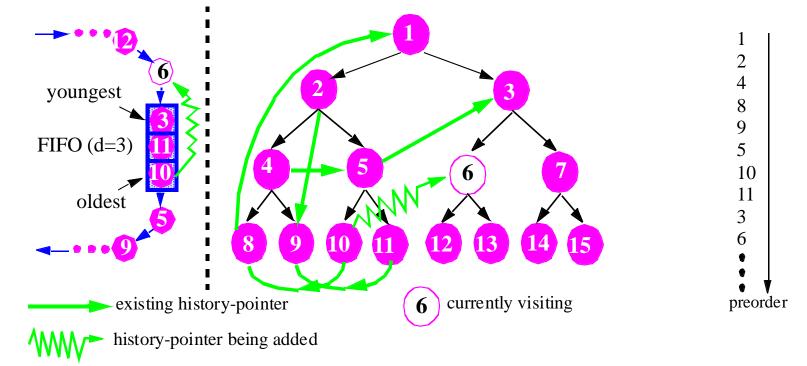




- Reasonably effective in practice
- However, little control over the prefetching distance

History-Pointer Prefetching

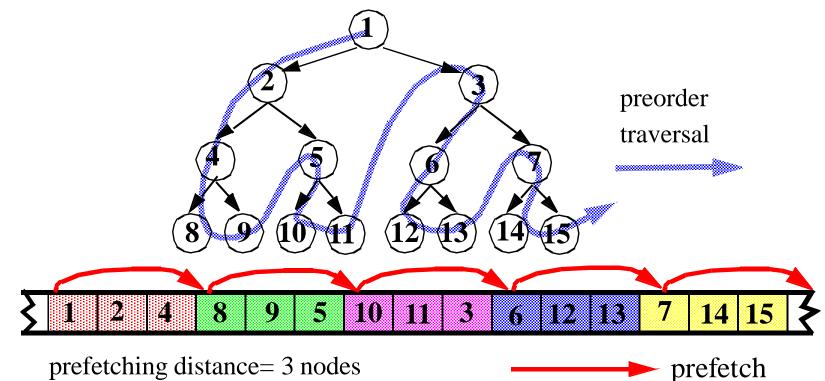
- Add new pointer(s) to each node
 - history-pointers are obtained from some recent traversal



• Trade space & time for better control over prefetching distances

Data-Linearization Prefetching

- No pointer dereferences are required
- Map nodes close in the traversal to contiguous memory



Summary of Prefetching Algorithms

	Greedy	History-Pointer	Data-Linearization
Control over Prefetching Distance	little	more precise	more precise
Applicability to Recursive Data Structures	any RDS	revisited; changes only slowly	must have a major traversal order; changes only slowly
Overhead in Preparing Prefetch Addresses	none	space + time	none in practice
Ease of Implementation	relatively straightforward	more difficult	more difficulty

Conclusions

- Propose 3 schemes to overcome the pointer-chasing problem:
 - Greedy Prefetching
 - History-Pointer Prefetching
 - Data-Linearization Prefetching
- Automated greedy prefetching in SUIF
 - improves performance significantly for half of Olden
 - memory feedback can further reduce prefetch overhead
- The other 2 schemes can outperform greedy in some situations

CSC D70: Compiler Optimization Parallelization

Prof. Gennady Pekhimenko University of Toronto Winter 2018

The content of this lecture is adapted from the lectures of Todd Mowry and Tarek Abdelrahman

$$S_{1}: A = 1.0
S_{2}: B = A + 2.0
S_{3}: A = C - D
:
S_{4}: A = B/C$$

- Flow (true) dependence: a statement S_i precedes a statement S_j in execution and S_i computes a data value that S_i uses.
- Implies that S_i must execute before S_i.

$$S_i \delta^{\dagger} S_j$$
 ($S_1 \delta^{\dagger} S_2$ and $S_2 \delta^{\dagger} S_4$)

$$S_{1}: A = 1.0
S_{2}: B = A + 2.0
S_{3}: A = C - D
:
S_{4}: A = B/C$$

- Anti dependence: a statement S_i precedes a statement S_j in execution and S_i uses a data value that S_i computes.
- It implies that S_i must be executed before S_j.

$$S_{i} \delta^{\alpha} S_{j} \qquad (S_{2} \delta^{\alpha} S_{3})$$

$$S_{1}: A = 1.0
S_{2}: B = A + 2.0
S_{3}: A = C - D
:
S_{4}: A = B/C$$

- Output dependence: a statement S_i precedes a statement S_j in execution and S_i computes a data value that S_i also computes.
- It implies that S_i must be executed before S_i.

$$S_i \delta^{\circ} S_j$$
 ($S_1 \delta^{\circ} S_3$ and $S_3 \delta^{\circ} S_4$)

$$S_{1}: A = 1.0
S_{2}: B = A + 2.0
S_{3}: A = C - D
:
S_{4}: A = B/C$$

- Input dependence: a statement S_i precedes a statement S_j in execution and S_i uses a data value that S_i also uses.
- Does this imply that S_i must execute before S_i?

$$S_i \delta^I S_j$$
 ($S_3 \delta^I S_4$)

Data Dependence (continued)

- The dependence is said to flow from S_i to S_j because S_i precedes S_i in execution.
- S_i is said to be the source of the dependence. S_j is said to be the sink of the dependence.
- The only "true" dependence is flow dependence; it represents the flow of data in the program.
- The other types of dependence are caused by programming style; they may be eliminated by re-naming.

$$S_{1}: A = 1.0
S_{2}: B = A + 2.0
S_{3}: A1 = C - D
: S_{4}: A2 = B/C$$

Data Dependence (continued)

 Data dependence in a program may be represented using a dependence graph G=(V,E), where the nodes V represent statements in the program and the directed edges E represent dependence relations.

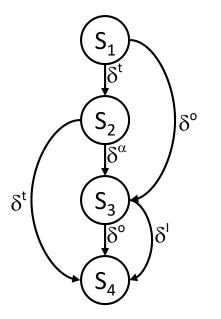
$$S_{1}: A = 1.0$$

$$S_{2}: B = A + 2.0$$

$$S_{3}: A = C - D$$

$$\vdots$$

$$S_{4}: A = B/C$$



Value or Location?

 There are two ways a dependence is defined: value-oriented or location-oriented.

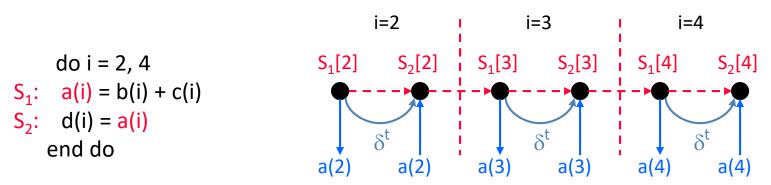
$$S_{1}: A = 1.0$$

$$S_{2}: B = A + 2.0$$

$$S_{3}: A = C - D$$

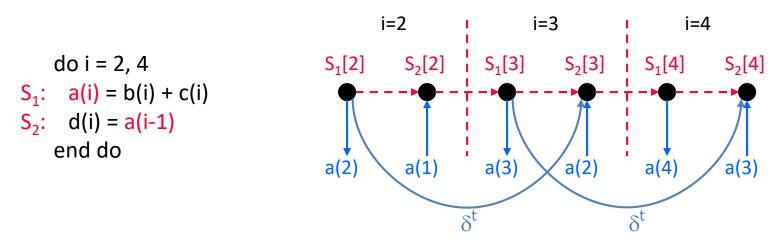
$$\vdots$$

$$S_{4}: A = B/C$$



- There is an instance of S₁ that precedes an instance of S₂ in execution and S₁ produces data that S₂ consumes.
- S_1 is the source of the dependence; S_2 is the sink of the dependence.
- The dependence flows between instances of statements in the same iteration (loop-independent dependence).
- The number of iterations between source and sink (dependence distance) is
 0. The dependence direction is =.

$$S_1 \delta_1^{\dagger} S_2^{\dagger}$$
 or $S_1 \delta_0^{\dagger} S_2^{\dagger}$



- There is an instance of S₁ that precedes an instance of S₂ in execution and S₁ produces data that S₂ consumes.
- S_1 is the source of the dependence; S_2 is the sink of the dependence.
- The dependence flows between instances of statements in different iterations (loop-carried dependence).
- The dependence distance is 1. The direction is positive (<).

$$S_1 \delta_{<}^{\dagger} S_2$$
 or $S_1 \delta_1^{\dagger} S_2$

i=2 i=3 i=4 S₁[3] S₂[3] do i = 2, 4 S₁[2] $S_{2}[2]$ $S_{1}[4]$ $S_{2}[4]$ $S_1: a(i) = b(i) + c(i)$ S_2 : d(i) = a(i+1) δa ca end do a(2) a(3) a(3) a(4) a(4) a(5)

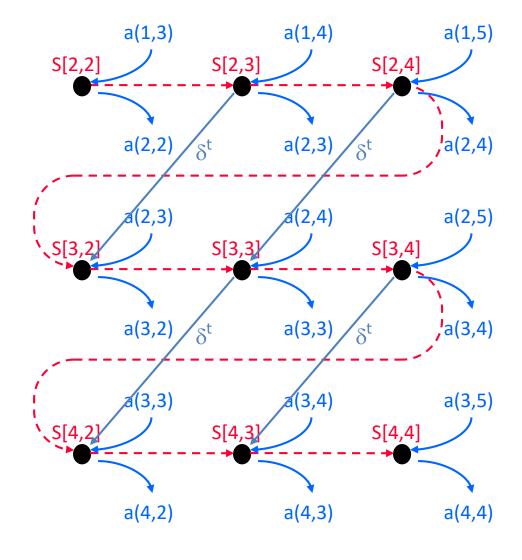
- There is an instance of S₂ that precedes an instance of S₁ in execution and S₂ consumes data that S₁ produces.
- S_2 is the source of the dependence; S_1 is the sink of the dependence.
- The dependence is loop-carried.
- The dependence distance is 1.

 $S_2 \delta_{<}^{\alpha} S_1$ or $S_2 \delta_1^{\alpha} S_1$

• Are you sure you know why it is $S_2 \delta_{<}^a S_1$ even though S_1 appears before S_2 in the code?

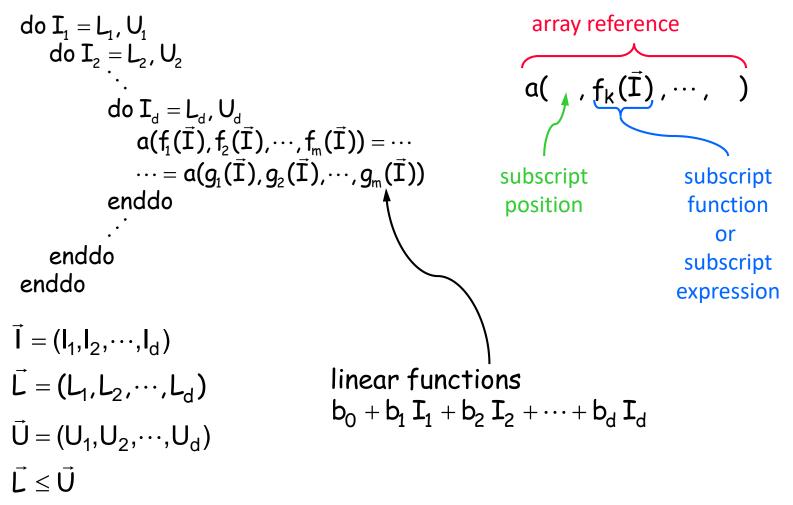
- do i = 2, 4 do j = 2, 4 S: a(i,j) = a(i-1,j+1) end do end do
- An instance of S precedes another instance of S and S produces data that S consumes.
- S is both source and sink.
- The dependence is loopcarried.
- The dependence distance is (1,-1).

$$S\delta^{\dagger}_{(<,>)}S$$
 or $S\delta^{\dagger}_{(1,-1)}S$



Problem Formulation

• Consider the following perfect nest of depth d:



Problem Formulation

• Dependence will exist if there exists two iteration vectors \vec{k} and \vec{j} such that $\vec{L} \le \vec{k} \le \vec{j} \le \vec{U}$ and:

$$\begin{array}{ll} f_1(\vec{k}) = g_1(\vec{j}) \\ \text{and} & f_2(\vec{k}) = g_2(\vec{j}) \\ \text{and} & \vdots \\ \text{and} & f_m(\vec{k}) = g_m(\vec{j}) \end{array}$$

• That is:

$$f_{1}(\vec{k}) - g_{1}(\vec{j}) = 0$$

and
$$f_{2}(\vec{k}) - g_{2}(\vec{j}) = 0$$

:
and
$$f_{m}(\vec{k}) - g_{m}(\vec{j}) = 0$$

Problem Formulation - Example

do i = 2, 4 $S_1: a(i) = b(i) + c(i)$ $S_2: d(i) = a(i-1)$ end do

 Does there exist two iteration vectors i₁ and i₂, such that

 $2 \le i_1 \le i_2 \le 4$ and such that:

 $i_1 = i_2 - 1?$

- Answer: yes; i₁=2 & i₂=3 and i₁=3 & i₂=4.
- Hence, there is dependence!
- The dependence distance vector is $i_2 i_1 = 1$.
- The dependence direction vector is sign(1) = <.

Problem Formulation - Example

do i = 2, 4 $S_1: a(i) = b(i) + c(i)$ $S_2: d(i) = a(i+1)$ end do

- Does there exist two iteration vectors i₁ and i₂, such that
 - $2 \leq i_1 \leq i_2 \leq 4$ and such that:

$$i_1 = i_2 + 1?$$

- Answer: yes; i₁=3 & i₂=2 and i₁=4 & i₂ =3. (But, but!).
- Hence, there is dependence!
- The dependence distance vector is $i_2 i_1 = -1$.
- The dependence direction vector is sign(-1) = >.
- Is this possible?

Problem Formulation - Example

do i = 1, 10 $S_1: a(2*i) = b(i) + c(i)$ $S_2: d(i) = a(2*i+1)$ end do

• Does there exist two iteration vectors i_1 and i_2 , such that $1 \le i_1 \le i_2 \le 10$ and such that:

$$2*i_1 = 2*i_2 + 1?$$

- Answer: no; $2*i_1$ is even & $2*i_2+1$ is odd.
- Hence, there is no dependence!

Problem Formulation

- Dependence testing is equivalent to an integer linear programming (ILP) problem of 2d variables & m+d constraint!
- An algorithm that determines if there exits two iteration vectors k and j that satisfies these constraints is called a dependence tester.
- The dependence distance vector is given by $\vec{j} \vec{k}$
- The dependence direction vector is give by sign($\vec{j} \vec{k}$).
- Dependence testing is NP-complete!
- A dependence test that reports dependence only when there is dependence is said to be exact. Otherwise it is in-exact.
- A dependence test must be conservative; if the existence of dependence cannot be ascertained, dependence must be assumed.

Dependence Testers

- Lamport's Test.
- GCD Test.
- Banerjee's Inequalities.
- Generalized GCD Test.
- Power Test.
- I-Test.
- Omega Test.
- Delta Test.
- Stanford Test.
- etc...

CSC D70: Compiler Optimization Parallelization

Prof. Gennady Pekhimenko University of Toronto Winter 2018

The content of this lecture is adapted from the lectures of Todd Mowry and Tarek Abdelrahman